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Abstract— It will significantly facilitate cognitive load 
measurements to design a filtering method that reduces the error 
in the preprocessing of eye data while making a maximum of data 
available for analysis. We discuss a new approach that uses a 
Random Subspace (RS) ensemble method with sequential window 
frames of different sizes over the time course of the experiment to 
preprocess data for predicting the level of cognitive load. To 
investigate the suitability of the RS method, we carefully 
administrated two different visual search tasks imposing different 
levels of cognitive load to thoroughly evaluate the proposed 
method. Using our new filtering method, samples were evenly 
removed from both conditions (Nada: It is not clear to me what 
those two conditions are?), producing balanced datasets. In our 
experiments, the RS preprocessing method kept 85% of the 
original dataset, compared to 68% for the conventional baseline 
method method. Furthermore, the RS filter method is able to 
produce higher classification accuracy with regard to cognitive 
load level than the conventional approach. The results suggest that 
using machine learning in designing preprocessing techniques, 
instead of rigidly using a given hard threshold, to filter human 
psychophysical data can effectively improve cognitive load 
measurements. 

Index Terms-- Cognitive load; data preprocessing; machine 
learning; psychophysical experimentation; pupil dilation 

I. INTRODUCTION  
Being aware of a user’s mental status is an important step in 

making interacting systems that are more usable, i.e., impose 
lower mental workload and stress level on their users. A 
suitable indicator for such demands is cognitive load, which 
reflects the user’s effort while completing particular tasks [7].  
Obtaining accurate measurements of cognitive load level in 
preprocessing the data before analysis is crucial for the success 
of such efforts. Most studies of human behavior reject trials that 
have incorrect responses, for example, when participants failed 
to find the target in a search task. Removal of faulty data is 
performed at the data preparation stage, where trials, blocks of 
trials, or even entire subject’s data sets are excluded from 
analysis if the subject’s performance falls below a given 
threshold, based on the assumption that these data contain more 
noise than informative data as reference [22]. However, this 

assumption using a given hard threshold may mistakenly 
discard valuable informative data along with noise.  

Using an algorithm for selecting relevant data from 
psychophysical experiments such as pupil or EEG data can be 
a useful solution to avoid human error and to reduce the number 
of features that need to be analyzed. A large number of 
algorithms have been proposed for feature selection from 
human data [2]. In reference [17], Qian et al. studied visual 
target detection events, developing a pupillary response feature 
extraction method that helped select useful pupil data to 
improve the analysis based only on EEG signals. To assure the 
robustness of the method for selecting pupil data and EEG 
channels, they applied a two level linear classifier to obtain 
cognitive task related analysis of EEG and pupil responses. 
Their decision to use a finite pupil data sample and EEG 
features selected by those classifiers improved the classification 
performance during the analysis stage.  

The true characteristics of psychophysical data are difficult 
to define, and some tasks induce higher cognitive load or stress. 
For example, we cannot be sure what the participants are doing 
or what kind of response the pupil size is indicating. Hence, it 
is useful to consider a method to classify the data rather than 
interpreting raw psychophysical data. Thus, defining such 
quantitative exclusion criteria is important as using human 
judgment may bias the analysis and possibly leave significantly 
more samples in some experimental conditions than in others. 
In the following, we will refer to this type of analysis as the 
conventional method. 

To help filtering out data that only adds noise and does not 
reflect cognitive processing, it is important to measure relevant 
features accurately and in real time. Many studies have used 
pupil size as a useful, quick feature and reliable indicator of a 
person's cognitive load [16]. Measuring this variable allows the 
study of moment-to-moment deployment strategies during a 
given task and the monitoring of cognitive load during the 
course of that task [6], [15], [21], [22]. In typical laboratory 
tasks, many factors can easily influence the observer’s pupil 
size. This includes ambient luminance, arousal, or any 
emotional stimulus content. Such interferences need to be 
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reduced in order for them not to impede cognitive load 
measurement. Pomplun and Sunkara [16] conducted an 
experiment to compare the effects of cognitive workload and 
display brightness on pupil size during a visual monitoring task. 
Other studies measured cognitive load under luminance 
changes during an arithmetic task [11]. These experimental 
results proposed a fine grained approach for cognitive load 
measurement under laboratory conditions that involve changes 
in the visual properties of the stimuli. 

During data preprocessing, in order to reduce the influence 
of pupil tracking data that is unrelated to the cognitive load on 
the classification results, we used a Random Subspace (RS) 
ensemble classifier, employing the error rate of small size 
intervals from pupil data time series during an ongoing 
experiment. RS has been found to work well for problems with 
large dimensionality and excessive feature-to-instance ratio 
[12], [13], [18]. To enable a theoretical analysis of RS time 
series, we assumed that only a small (known) proportion of the 
features are important to the classification (pupil size and type 
of two conditions). The remaining features, such as reaction 
time (RT), response key, and blinks were not considered 
substantial. 

II. PUPIL DATA MEASURING DURING VISUAL SEARCH TASK 
Visual search is arguably the most common task for 

measuring cognitive workload [14]. It has therefore received 
substantial research interest to understand the link between 
cognitive load and search performance [9], [10], [19]. When 
individuals perform a visual task, pupil size appears to be a 
function of the cognitive effort and attention required [8], and 
it specifically reflects the cognitive effort required to perform 
complex visual tasks [3], [5], [20], [23]. In reference [8], Porter, 
Troscianko, and Gilchrist, used pupillometry to study visual 
working memory load during visual search. Their visual search 
and counting task experiments manipulated search difficulty by 
varying the number of distractors as well as the heterogeneity 
of the distractors, and the dilatory patterns were compared 
between the two tasks. The results indicated an almost constant, 
large pupil size during the counting task. In contrast, during 
search, pupil size increased from the start of the trial onward, 
which the authors interpreted as showing increasing cognitive 
load as the search progressed.   

Our study collected pupil data in the same procedure of the 
study by Attar et al. [19]. In their experiment, the authors used 
mean pupil size as the main variable to test how cognitive load 
varies during search based on the auditory feedback on task 
performance that subjects receive. That technique was able to 
improve the cognitive engagement as suggested by the greater 
effort being devoted to the search task, even though the fixation 
time on the items in both conditions was similar. The result of 
their study showed that providing online instant feedback 
during the sequential search task improved search performance 
and helped subjects find the next target faster. Interestingly, this 
increase in search efficiency was not due to the longer pause 
duration associated with target responses as suggested by other 
studies on visual selection, in which the longer planning time 
could result in a better target selection [1], [4]. Instead, the 
better performance was likely due to the greater cognitive 
effort. That is, when the feedback was provided, the pupil size 

increased, indicating that more attentional resources may have 
been devoted than when only neutral sound was provided in the 
control condition. 

III. OBJECTIVES OF THE STUDY 
The current study investigated the suitability of using the 

random subspace machine learning method in preprocessing 
the raw data and compared it to the conventional method. We 
collected pupil data from a multiple-target visual search task 
with two conditions that require different levels of mental 
effort. Since the two conditions induce different levels of 
cognitive load [19], time series defined by windows from 
different consecutive trials were expected to contain upward or 
downward steps in cognitive load. Intuitively, classification to 
filter the trial time-series could be viewed as the detection of 
these steps. The resulting data was then used to measure mean 
pupil size for each of the experimental conditions to see if 
filtering the data could increase accuracy in measuring different 
levels of cognitive load than filtering manually. 

IV. EXPERIMENT 

A. Data Collection 
The data was collected from 17 healthy 18 to 35 years old 

volunteers who signed consent forms before the experiment. 
All had normal or corrected to normal vision. Each subject 
received a $10 honorarium. Eye movements were tracked and 
recorded using an SR Research EyeLink-2k system. Its 
sampling frequency was set to 1000 Hz. Stimuli were presented 
on a 22-inch ViewSonic LCD monitor at a viewing distance of 
50 cm. Its refresh rate was set to 75 Hz and its resolution was 
set to 1024 x 768 pixels. Participant responses were entered 
using a keyboard.  

A total of 120 displays (1024 x 768 pixels) were generated 
by a MATLAB script. Each display was composed of 32 Gabor 
patches (27 distractors and 5 targets) pasted on a gray 
background, each with a radius of 1 degree. The targets were 
oriented either vertically or horizontally. The distractors were 
oriented randomly with a minimum angular difference of 12° 
from both the vertical and the horizontal orientation. The 
orientations of targets in the same trial were identical and 
randomly selected. To make sure that the objects did not 
overlap, we set a minimum distance of 3 degrees between the 
centers of any two Gabor patches.  A sample stimulus is shown 
in Figure. 1. 

To investigate the effect of instant auditory feedback on 
search performance, two feedback conditions were tested: One 
was an auditory feedback condition in which two types of 
sounds were used to indicate whether the response subjects 
made (about finding an individual target and fixating on a 
target) was correct or not. The other was a control condition in 
which subjects always received an identical sound whenever 
they made a response. Subjects performed 10 trials per block 
and 6 blocks in each condition (1 for practice and 5 for the 
actual test), and both conditions were presented in an 
alternating order. Every trial was followed by a 3-second blank 
screen as a baseline so that pupil size had time to go back to its 
“resting” state and measurement of pupil size was not 
influenced by the preceding trial. 
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An instruction screen was shown before each block to 
inform subjects about the experimental condition’s type. Each 
image display was only presented once to each subject, either 
in the auditory feedback condition or in the neutral sound 
condition.   
 

Figure 1.  A sample trial and target items for a search task that produces 
sound as a feedback signal for each target selection. 

 

During a trial, subjects were instructed to search for the five 
targets and press the ‘x’ key on the keyboard whenever they 
fixated on one of the targets. After they had heard a sound 
(either a feedback or neutral sound), they were to continue 
searching for the next target in the display. The next trial would 
begin once subjects pressed the space bar to indicate that they 
had found all targets or the stimulus had been shown for 15 
seconds (timeout). 

Subjects were informed that every trial had exactly five 
targets. They were trained to fixate on the target while they hit 
the response key. Some fixations landed on the blank area 
rather than on any search item. When this happened, we 
assumed this fixation to be aimed at the nearest item, i.e., the 
one whose center had the shortest Euclidean distance to the 
current fixation location. If the Euclidean distance was greater 
than a threshold which was set to 3.8 degrees, the fixation was 
not assigned to any of the items. A target response was 
considered a hit if subjects fixated on the target while making a 
response on the keyboard. A miss was counted if a selected item 
had already been previously selected during the same trial (a 
revisit), or the fixation during the response was on a distractor. 
If a subject found all five targets, the trial was considered as a 
passing trial; otherwise it was marked as a failing trial. 

B. Labeling the Data 
The class labels were of two control types (1 is used for the 

auditory feedback condition class;  -1 is used for the neutral 
sound condition class). We also extracted the response which 
was either 1 for passing a trial with all targets being found or 0 
for failing if any of the five targets were missed. MATLAB was 
used for extracting the average size of the pupil from the eye 
tracker data. 

V.  DATA PREPROCESSING 

A. Using the Conventional Method   
The data was analyzed with the same technique that 

previous studies had used, in that only the correct trials in which 
participants found the five targets and hit the correct key were 
included. This was decided as trials with responses to less than 
five targets might add noise to the analysis. The responses were 
identified as either a hit or a miss based on the button press.  

This technique of preprocessing the data collection 
described earlier left us with an unequal proportion of correct 
trials between conditions. Overall correct trials for participants 
in the auditory feedback condition was 79.31%, while they only 
achieved 67.54% correct trials in the neutral sound condition, 
which was a significant difference of more samples remaining 
in the in auditory feedback condition than in the neutral sound 
condition, t(16) = 3.83, p < .05. 

B. Using the RS Time-Series Method 
Although the data set had several features (pupil size, user 

response, blinks, reaction time, and class label), we only used 
pupil size to classify the cognitive load by predicting the 
condition (auditory feedback condition vs. neutral sound 
condition). For each trial, the percentage of average pupil 
dilation relative to the baseline at the beginning of each trial 
was computed. Subsequently, all the data was aligned in the 
same temporal order in which they were measured during the 
experiment. There were 120 trials in 12 alternating blocks. 
Every block consisted of 10 trials of one condition, leading to a 
total of 120 pupil data samples per subject (see Figure. 2). 

We applied the RS method using a window that takes an 
interval of trials from every two successive (and alternating) 
conditions. We chose windows spanning 4, 6, 8, and 10 trials. 
Every window size was tested with RS on the time series of the 
experiment. The center of the window was placed at the middle 
between every two blocks as it is shown in Figure. 2, i.e., 
covering half of the trials from the auditory condition and half 
of the trials from the neutral condition. For example, a window 
of size 8 covered the 4 last trials from block i and the 4 first 
trials of block (i+1). 

All the trials inside the window were classified using RS. 
Then, the window slid to the middle of the next two alternating 
blocks (if a window covers the last trials of block i and the first 
trials of block (i +1), then after the shift it will cover the last 
trials of block (i +1) and the first trials of block (i +2)). The 
classification was performed over the course of the entire 
experiment. A high accuracy is reported when the RS was able 
to predict the class label (auditory feedback condition or neutral 
sound condition) based on the pupil dilation data within the 
window. The pupil measurement is expected to fluctuate 
between each two blocks, indicating different cognitive loads 
for different types of conditions. If the accuracy was above 50% 
for the trials inside a window, we marked those trials as passing 
trials. Otherwise, the entire window content was marked as 
failing trials. We repeated this method for each subject and used 
all four window sizes. The data from failed trials is shown in 
Table I, including the proportion of rejected trials for RS using 
window interval time-series and the conventional method using 
user response in the auditory condition and the neutral 
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condition. RS was able to provide equal numbers of rejected 
trials for both conditions while the conventional method 
provided imbalanced numbers. 

Figure 2.   An example of one subject’s time series data. 

 

TABLE I.  REJECTED TRIALS FOR BOTH CONDITIONS  

Filtering Method 
Rejected Trials (%) 

Auditory Condition Neutral Condition 

Conventional method 20.69 32.46 

RS window size 4 36.33 36.33 

RS window size 6 55 55 

RS window size 8 15.3 15.3 

RS window size 10 20 20 

VI. COGNITIVE LOAD MEASUREMENT 
To further investigate how the cognitive resources were 

distributed throughout the search process, we examined the 
participants’ average pupil size when they performed the search 
task after we had preprocessed the data using the RS and the 
conventional method. 

A. Using the Conventional Method 
We compared the pupil size to investigate whether different 

cognitive effort was devoted depending on the two conditions 
during the continuous visual search. For this purpose, the mean 
pupil size (in pixels in the camera image) was computed during 
each correct trial only. The incorrect trials that we defined by 
the user response in Table 1 were rejected from the 
measurement. Pupil dilation was significantly greater in the 
auditory feedback condition than in the control condition, t(16) 
= 2.98, p < .05. 

B. Using the RS Time-Series Method 
We rejected the trials inside any window that did not have 

an accuracy higher than 50% for each subject as shown in Table 
1. For each subject we measured the average pupil size during 
the correct trials. Paired sample t-tests were conducted to 
analyze the difference in mean pupil size for each subject’s data 
generated by the new methods. This difference in pupil size 
between the auditory feedback condition and neutral sound 
condition for the RS methods with window intervals was 

significant, all ts(16) > 2.56, ps < .005.  Figure. 3 shows mean 
pupil size (in pixels in the camera image) for each experimental 
condition. The error bars indicate standard error of the mean. 
The conventional method and RS time-series with different 
window sizes were used to preprocess data. The pairwise 
differences between the results of the RS methods were not 
significant, preventing any conclusions about which window 
size is best to use for filtering data, all ts(16) < 1.38, ps > .1. 
However, there was a greater difference in pupil dilation 
between the auditory feedback and neutral sound conditions 
when data was removed according to the RS method than when 
using the conventional method. The difference in pupil size 
between two conditions using the conventional method was 
23.5, while for the RS method it was 43, 45, 37.7, and 47.5 
pixels for window sizes of 4, 6, 8, and 10, respectively.  

This finding suggests that using our machine-learning based 
method could better filter the data thus led to greater accuracy 
in distinguishing different levels of cognitive load than filtering 
manually, depending on the correctness of user responses. 

Figure 3.  Mean pupil size according to each preprocessing method 

VII. CATION APPROACH 
In this section, we used different classification approaches 

to evaluate detecting different cognitive load levels using the 
dataset filtered by the RS method and the dataset filtered by the 
conventional method. This section also gives more insight into 
the effect of window size on the results of the RS method. Ten-
fold cross-validation was used for evaluating four classifier 
approaches. 

We report the results in terms of the accuracy achieved from 
each of the filtered datasets. Using classifier approaches to 
detect different levels of cognitive load in the resulting dataset 
using each of the window sizes resulted in better accuracies 
than using the conventional method. Table II shows the 
classification results for detecting levels of cognitive load from 
mean pupil size for each dataset using the new different RS 
methods and the conventional method. These results indicate 
that the new method leads to better detection of different levels 
of cognitive load, regardless of the window size used. The 
results show that we can achieve reasonable classification 
accuracy, if we use an automatic learning technique to filter the 
data instead of using the conventional method. 

 

 



 

 

TABLE II.  CLASSIFICATION ACCURACIES USING THE FILTERED 
DATASETS 

Data Resulted from 
Classifier 

Accuracy of Detecting Cognitive Level of Four 
Classifier Approaches (%) 

Random 
Subspace 

Decision 
Tree 

Logistic 
Regression 

Multilayer 
Perceptron 

Conventional method 65 80.7 65.25 55.98 

RSM window size 4 77 84.9 84.01 56.86 

RSM window size 6 75.6 83.68 82 61.17 

RSM window size 8 84 85.98 83.92 58.52 

RSM window size 10 85 86.71 84.50 60.73 

VIII. CONCLUSIONS 
Our study provided an effective method to reduce errors 

related to preprocessing of pupil data before analysis, where a 
machine learning implementation using the random subspace 
method showed better outcomes than the conventional method. 
This work was motivated by the need for additional methods 
for evaluating implicit physiological features, such as pupil 
dilation, to measure cognitive load and to include as much data 
as possible in the analysis. The study showed that choosing 
different sizes of the window in the data preprocessing can 
effectively remove samples of pupil data that are unrelated to 
workload. Furthermore, this method removes the same amount 
of samples from the two tasks and balances the data that is used 
in the subsequent analysis.  

Our implementation could be very useful for experiments 
where we cannot be sure what the participants are doing or what 
kind of response the pupil dilation is indicating, allowing for 
the study of the behavioral result of these experiments. Prior 
research efforts depended on the user response using the 
keyboard to consider the data as valid to reflect the cognitive 
load. In our study, using the pupil size feature to predict the 
cognitive load succeeded and led to a sample size that was 
larger than for the conventional method with window sizes 8 
and 10. Further study is required to find an effective way for 
choosing the optimal window size for the classifier.  

We have proved that machine learning techniques can be 
applied to significantly facilitate the measurement of cognitive 
load in two different visual search tasks. As an extension of this 
work, the method we described could be applied to classifying 
workload in other contexts such as arithmetic problems or 
reading tasks. Moreover, it may be possible to detect multiple, 
finer-grained cognitive load levels. We believe that these 
findings have potential applications in designing interfaces that 
use the state of a user’s cognitive load rather than a user’s 
manual response, or for smart interfaces that adapt to a user’s 
levels of cognitive load. 
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